

C-Max™ ActiveX Server
Version 2.00 PRELIMINARY May 10, 2001

1. CMX.EXE should be launched once to properly register the ActiveX Object.

2. Create the ActiveX Object in the client application, the C-Max™ Banner will appear

for about 2 seconds. Calls can then be made to the ActiveX Server.

Included files:
 CMX.exe ActiveX Server
 CMX.tlb Type Library
 CMX ActiveX.doc This document

OpenComms(port_number)

Initializes the communications between the ActiveX Object and the CPUXA. This
method needs to be called once, before any other methods are called.

Usage:
 OpenComms(port_number)
 Where:

port_number
is a valid com port between 1 and 8

Note: If specified com port does not exist, or is already in use, an error box will appear.

CloseComms()

Closes the communications between the ActiveX Object and the CPUXA. This method
should be called at least 5 seconds before closing the client application.

LearnIR(number, frequency)

Instructs the CPUXA to “learn” an IR command into it’s memory. When this call is
made, a red window will appear until the IR is detected on the CPUXA.

Usage:
 LearnIR(number, frequency)
 Where:

number
 is the IR number to store the learned command in.
(Rev 2 boxes 0-79) (Rev 3 boxes 0-399)

frequency
is the modulation frequency in kHz for the learned command.
A frequency of 38 (kHz) works for most manufacturers of AV equipment.

SendIR(number, module, zone)
Transmits IR command out a specified emitter.

Usage:

SendIR(number ,module, zone)
 Where:
 number

is the IR number to store the learned command in. (0-79, 0-399)
 module

is “0” for sending the command out the CPUXA’s local port
For sending IR commands out of remote SECU16IR modules, module is the
address of that SECU16IR. (1-127)

zone
is the zone number (0-15) on the remote SECU16IR module to send the
command from. (zone does not apply if module is “0”)

 GetIR(*number, *module, *zone)
Retrieves the next IR code received and recognized (from previous learns) from the
CPUXA.

Usage:
 GetIR(*number,* module,* zone)
 Where:

number
is the IR number recognized (1-79)
(65535 if no IR is sensed)
(0 or 255 if IR was sensed but no match was found)

module
is where the IR was received. (0 = CPUXA, 1-127 = Remote CPUXAs)

zone
is always 0

Note: *number, *module and *zone are passed as integer pointers.

GetX10(*house, *key, *data)
Retrieves the next X10 code received from the CPUXA.

Usage:
 GetX10(*house,* key,* data)
 Where:

house
is the House Code (0-15)
(65535 if no X10 is received)

key
is the X10 key code (0-31)

data
is always 0

Note: *house, *key and *data are passed as integer pointers.

SendX10(*house, *key, *repeats)
Sends the X10 code specified from the CPUXA.

Usage:
 SendX10(house, key, repeats)
 Where:

house
is the House Code (0-15)

key
is the X10 key code (0-31)

repeats
is the number of times to repeat the transmission (1-15)
(used only on DIM and BRIGHT commands)

GetPoint(module, point, *status)
Returns whether an input (or relay) point is on or off.

Usage:

GetPoint(module, point,* status)
 Where:

module
is the module address (1-127) where the point (input) is located

point
is the point (0-15) number to sense

status
is the status of the point (0 = off, 1 = on)

Note: *status is passed as an integer pointer.

SendPoint(module, point, status)
Turn a relay on or off.

Usage:

SendPoint(module, point, status)
 Where:

module
is the module address (1-127) where the point (input) is located

point
is the point (0-15) number to sense

status
is the status of the point (0 = off, 1 = on)

GetVariable(number, *value)
Returns a CPU variable value

Usage:

GetVariable(number, *value)
 Where:

number
is the variable number (1-127) to retrieve

*value
variable value

Note: *value is passed as an integer pointer

GetTimer(number, *value)
Returns a CPU timer value

Usage:

GetTimer(number, *value)
 Where:

number
is the number number (1-64) to retrieve

*value
timer value

Note: *value is passed as an integer pointer

WriteUnitParameter(module, parm, data)
Change a module parameter

Usage:

WriteUnitParameter(module, parm, data)
 Where:

module
is the module number (1-127) to write the parameter

parm
the paramter to write

data
new parameter value

WriteCPUParameter(parm, data)
Change a CPU parameter

Usage:

WriteCPUParameter(parm, data)
 Where:

parm
the paramter to write

data
new parameter value

SetCPUClock(hour, minute, month, date, year, day)
Change the CPU clock

Usage:

SetCPUClock (hour, minute, month, date, year, day)
 Where:

hour (0 – 23)
minute (0 – 59)
month (1 – 12)
date (0 – 31)
year (00 – 99)
day (0 - 6) Day of the week, Sunday = 0

 Note: This function does not check for valid values, the programmer is responsible
 for ensuring all values passed are valid

GetCPUClock(*hour, *minute, *month, *date, *year, *day)
Read the CPU clock

Usage:

SetCPUClock (hour, minute, month, date, year, day)
 Where:

hour (0 – 23)
minute (0 – 59)
month (1 – 12)
date (0 – 31)
year (00 – 99)
day (0 - 6) Day of the week, Sunday = 0

 Note: All values are passed as integer pointers

